
All Turing-Computable* Functions 
are Recursive 

Computability and Logic 



Basic Idea 
• We’re going to code (i.e. assign natural numbers to) the machine 

and machine-configuration (tape contents, head location, internal 
state) at every step. 

• We’ll show how the configuration at each step is a recursive 
function of the configuration of the previous step and the nature of 
the machine 

• Thus, the halting configuration is a recursive function of the starting 
configuration and machine. 

• Add to this: 
– The starting configuration is a recursive function of the function input 

value. 
– The function output value is a recursive function of the halting 

configuration. 
• And you get: the function output value is a recursive function of the 

function input value … if the function is Turing-computable. 



Set-Up 
• Consider a Turing-machine M that computes* function f(x): 

– M starts with [x] (x+1 consecutive 1’s on otherwise blank (all 0) tape with head 
at leftmost 1) 

– M halts with [f(x)] if f(x) is defined 
– M does not halt, or halts in non-standard output configuration, if f(x) is not 

defined 
– M has states q0, … qk 

– M only uses 1’s and 0’s 
– M has a 0-transition and a 1-transition defined for every state q1, … qk 
– No 0-transition or 1-transition is defined for state q0 
– M starts in state q1 
– M halts in state q0 

• The proof can easily be modified to deal with functions with more than 1 
argument, machines that use non-binary alphabet, and machines that 
don’t follow the above convention regarding its internal states 



Coding the Tape Configuration  
(Tape Contents and Head Location) 

• Since we’re only using 0’s and 1’s as our symbols, we 
can treat the part of the tape to the left and right of 
the head location as binary numbers (why?). 

• Thus the tape configuration can be coded using 3 
numbers (see diagram below): 
– l: the left number 
– r: the right number (note the flip!) 
– s: the symbol/number (0 or 1) that the head is looking at 

• If using j different symbols (which can be coded as 0, …, 
j-1), treat the symbol string as the j-base 
representation of a number. 

1 All 0’s All 0’s 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

l = 1101012 = 5310 s = 1 r = 10111102 = 9410 



Coding Machine Configuration 

• The machine configuration at each step of the computation is 
the tape configuration plus internal state qi machine is in. 

• So this can be coded by 4 numbers: l,r,s,i 
• Code this by a single configuration number c that is a 

recursive function of l,r,s,i: 
– c = conf(l,r,s,i) = 2l*3r*5s*7i 

• We can recover I,r,s,I from c using recursive functions: 
– l = left(c) = lo(c,2) 
– r = right(c) = lo(c,3) 
– s = sym(c) = lo(c,5) 
– i = state(c) = lo(c,7) 

 



Coding the Machine 

• Machine M will be coded by a sequence of numbers 
a10, q10, a11, q11, a20, q20, a21, q21, …, ak0, qk0, ak1, qk1 

• Where: 
– ais = action to take when in state i and looking at symbol s:  

• a = 0 for write 0 
• a = 1 for write 1 
• a = 2 for move left 
• a = 3 for move right 

– qis = new state to go to when in state i and looking at 
symbol s 
 

 



Getting Instructions 

• Let m be the single code number for the sequence coding 
machine M: m = 2a10*3q10*… 

• Then, the (codes of the) action to take and the new state to go 
to for machine M when in state qi and looking at symbol s are 
recursive functions (the ‘–’ function is the modified difference 
function) of m, i, and s: 
• action(m,i,s) = ent(m,4*(i-1) + 2*s) (remember: the exponent of 2 is 

considered the ‘0th’ entry (since it usually encodes the length of a 
sequence, rather than the first entry of the sequence)) 

• action(m,0,s) = 0 (whatever, will never be used) 
• newstate(m,i,s) = ent(m,4*(i-1) + 2*s + 1) if i > 0 
• newstate(m,0,s) = 0 (whatever, will never be used) 



Performing Actions 

• We can define the new left number l as a (recursive) function 
(through a definition by cases) of the old tape configuration 
(as indicated by l,r, and s), and the action a to take: 
– newleft(l,r,s,a) = l if a = 0 (write 0) 
– newleft(l,r,s,a) = l if a = 1 (write 1) 
– newleft(l,r,s,a) = quo(l,2) if a = 2 (move left) 
– newleft(l,r,s,a) = 2*l + s if a = 3 (move right) 

• Likewise for newright (and now you understand why 
we flipped the right binary string!) 

• And for the new symbol: 
– newsym(l,r,s,a) = 0 if a = 0 (=1 for a = 1) 
– newsym(l,r,s,a) = rem(l,2) if a = 2 (=rem(r,2) if a = 3) 



Define new Configuration 
• Now we want to show that the (code of the) new 

configuration is a recursive function of the (code of 
the) current configuration and (code of the) machine. 
– action(m,c) = action(m,state(c),sym(c)) 
– newstate(m,c) = newstate(m,state(c),sym(c)) 
– newconf(m,c) = conf( 

 newleft(left(c),right(c),sym(c),action(m,c)), 
newright(left(c),right(c),sym(c),action(m,c)), 
newsym(left(c),right(c),sym(c),action(m,c)), 
newstate(m,c) 
)  if state(c) > 0 

– newconf(m,c) = c   if state(c) = 0 
 



Configuration at Any Time 

• Now we can show that the configuration at 
any step during the computation is a recursive 
function of the machine and its starting 
configuration. Using Recursion: 

• conf(m,x,t) = the (code of the) configuration 
that machine M (with code m) is in after t 
steps when started on input tape [x]: 
– conf(m,x,0) = conf(0,2x-1,1,1)  (verify this!) 
– conf(m,x,t+1) = newconf(m,conf(m,x,t)) 



Has M Halted in Standard 
Configuration? 

• Define relation Done(m,x,t) iff machine M 
(coded by m) with input tape [x] has halted in 
some standard output configuration after t 
steps (or before that). 
– Done(m,x,t) iff  

left(conf(m,x,t)) = 0 ∧ 
right(conf(m,x,t)) = 2lg(right(conf(m,x,t)),2)+1 - 1 ∧ 
sym(conf(m,x,t)) = 1 ∧ 
state(conf(m,x,t)) = 0 



When is M done, if ever? 

• Let’s figure out when M is done (as defined on 
previous slide), if ever (i.e. after how many steps 
does M, when started on [x], halt in standard 
output configuration, if it ever does?) 
– halttime(m,x) = Mn[c¬Done](m,x) 
– Explanation:  

• Mn[f](x) returns smallest y for which f(x,y) = 0 if such a y 
exists, otherwise it is undefined.  

• c ¬Done(m,x,t) = 0 iff M when started on [t] has halted in 
standard output configuration 

• So, Mn[c¬Done](m,x) returns smallest t for which M has halted 
in standard output configuration when started on [x], if such 
a t exists, otherwise it is undefined. 

 



Getting function value from  
Output Tape 

• Finally, let’s get the output value f(x) of the 
function computed by M when given input [x]: 
– f(m,x) = lg(right(conf(m,x,halttime(m,x))),2)+1 

• Note that if M does not halt in standard 
output configuration for some input [x], then 
halttime(m,x) is undefined, meaning that 
f(m,x) will be undefined as well … which is 
what it should be. 



Summing Up 
• Suppose f is Turing-computable*. 
• Then there is some Turing-machine that computes* f, i.e. 

for any x: 
– M transforms [x] into [y] iff f(x) = y 
– M, when started in [x] does not halt in standard output 

configuration iff f(x) is undefined 
• But we just showed: 

– M transforms [x] into [y] iff f(m,x) = y 
– M, when started in [x] does not halt in standard output 

configuration iff f(m,x) is undefined 
• So, for any x: f(x) = f(m,x) 
• Since f(m,x) is a recursive function, f(x) is recursive as well. 
• So, all Turing-computable* functions are recursive. 
 



So What? 

• We have shown that: 
– All Abacus-computable* functions are Turing-computable* 
– All recursive functions are Abacus-computable* 
– All Turing-computable* functions are recursive 

• Hence, these 3 sets of functions are exactly the same 
set of functions! 

• Seeing that alternative proposed definitions of 
computability (or calculability) turn out to be 
equivalent to each other provides further evidence for 
the Church-Turing Thesis that every computable 
function is Turing-computable* 



Moreover 

• The proof that all Turing-computable* functions are recursive 
can easily be modified to include machines that use an 
alphabet of any (finite) size (how?). 

• In the proof that all Abacus-computable* functions are Turing-
computable* we showed that any Abacus machine can be 
simulated using a Turing-machine using a binary alphabet 
only. 

• Thus, having more than 2 symbols does not increase the 
power of Turing-machines: anything that a Turing-machine 
can compute using any number of symbols can be computed 
using a Turing machine using only 2 symbols. 



Even More 

• In the proof that all Abacus-computable* functions are Turing-
computable* we showed that any Abacus machine can be 
simulated using  a Turing-machine that never goes more than 
2 squares to the left of its starting position. 

• Hence, anything that is Turing-computable* can be computed 
using a Turing-machine that has a one-sided infinite tape only: 
you just need to either represent the input on the tape 
preceded by two 0’s, or start any computation by shifting the 
input two places to the right while never moving to the left of 
the starting point (HW question: design such a Turing-
machine) 



Oh, and one more Little Thing 

• Since the function f(m,x) from our proof is 
recursive, it is Turing-computable. 

• So, there is some Turing-machine that is able 
to take in (the codes of) any Turing-machine M 
and input x and output what that machine M 
outputs when provided with input x. 

• This is of course a Universal Turing-machine! 
• So, we have established the existence of a 

Universal Machine. 
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