
All Turing-Computable* Functions
are Recursive

Computability and Logic

Basic Idea
• We’re going to code (i.e. assign natural numbers to) the machine

and machine-configuration (tape contents, head location, internal
state) at every step.

• We’ll show how the configuration at each step is a recursive
function of the configuration of the previous step and the nature of
the machine

• Thus, the halting configuration is a recursive function of the starting
configuration and machine.

• Add to this:
– The starting configuration is a recursive function of the function input

value.
– The function output value is a recursive function of the halting

configuration.
• And you get: the function output value is a recursive function of the

function input value … if the function is Turing-computable.

Set-Up
• Consider a Turing-machine M that computes* function f(x):

– M starts with [x] (x+1 consecutive 1’s on otherwise blank (all 0) tape with head
at leftmost 1)

– M halts with [f(x)] if f(x) is defined
– M does not halt, or halts in non-standard output configuration, if f(x) is not

defined
– M has states q0, … qk

– M only uses 1’s and 0’s
– M has a 0-transition and a 1-transition defined for every state q1, … qk
– No 0-transition or 1-transition is defined for state q0
– M starts in state q1
– M halts in state q0

• The proof can easily be modified to deal with functions with more than 1
argument, machines that use non-binary alphabet, and machines that
don’t follow the above convention regarding its internal states

Coding the Tape Configuration
(Tape Contents and Head Location)

• Since we’re only using 0’s and 1’s as our symbols, we
can treat the part of the tape to the left and right of
the head location as binary numbers (why?).

• Thus the tape configuration can be coded using 3
numbers (see diagram below):
– l: the left number
– r: the right number (note the flip!)
– s: the symbol/number (0 or 1) that the head is looking at

• If using j different symbols (which can be coded as 0, …,
j-1), treat the symbol string as the j-base
representation of a number.

1 All 0’s All 0’s 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

l = 1101012 = 5310 s = 1 r = 10111102 = 9410

Coding Machine Configuration

• The machine configuration at each step of the computation is
the tape configuration plus internal state qi machine is in.

• So this can be coded by 4 numbers: l,r,s,i
• Code this by a single configuration number c that is a

recursive function of l,r,s,i:
– c = conf(l,r,s,i) = 2l*3r*5s*7i

• We can recover I,r,s,I from c using recursive functions:
– l = left(c) = lo(c,2)
– r = right(c) = lo(c,3)
– s = sym(c) = lo(c,5)
– i = state(c) = lo(c,7)

Coding the Machine

• Machine M will be coded by a sequence of numbers
a10, q10, a11, q11, a20, q20, a21, q21, …, ak0, qk0, ak1, qk1

• Where:
– ais = action to take when in state i and looking at symbol s:

• a = 0 for write 0
• a = 1 for write 1
• a = 2 for move left
• a = 3 for move right

– qis = new state to go to when in state i and looking at
symbol s

Getting Instructions

• Let m be the single code number for the sequence coding
machine M: m = 2a10*3q10*…

• Then, the (codes of the) action to take and the new state to go
to for machine M when in state qi and looking at symbol s are
recursive functions (the ‘–’ function is the modified difference
function) of m, i, and s:
• action(m,i,s) = ent(m,4*(i-1) + 2*s) (remember: the exponent of 2 is

considered the ‘0th’ entry (since it usually encodes the length of a
sequence, rather than the first entry of the sequence))

• action(m,0,s) = 0 (whatever, will never be used)
• newstate(m,i,s) = ent(m,4*(i-1) + 2*s + 1) if i > 0
• newstate(m,0,s) = 0 (whatever, will never be used)

Performing Actions

• We can define the new left number l as a (recursive) function
(through a definition by cases) of the old tape configuration
(as indicated by l,r, and s), and the action a to take:
– newleft(l,r,s,a) = l if a = 0 (write 0)
– newleft(l,r,s,a) = l if a = 1 (write 1)
– newleft(l,r,s,a) = quo(l,2) if a = 2 (move left)
– newleft(l,r,s,a) = 2*l + s if a = 3 (move right)

• Likewise for newright (and now you understand why
we flipped the right binary string!)

• And for the new symbol:
– newsym(l,r,s,a) = 0 if a = 0 (=1 for a = 1)
– newsym(l,r,s,a) = rem(l,2) if a = 2 (=rem(r,2) if a = 3)

Define new Configuration
• Now we want to show that the (code of the) new

configuration is a recursive function of the (code of
the) current configuration and (code of the) machine.
– action(m,c) = action(m,state(c),sym(c))
– newstate(m,c) = newstate(m,state(c),sym(c))
– newconf(m,c) = conf(

 newleft(left(c),right(c),sym(c),action(m,c)),
newright(left(c),right(c),sym(c),action(m,c)),
newsym(left(c),right(c),sym(c),action(m,c)),
newstate(m,c)
) if state(c) > 0

– newconf(m,c) = c if state(c) = 0

Configuration at Any Time

• Now we can show that the configuration at
any step during the computation is a recursive
function of the machine and its starting
configuration. Using Recursion:

• conf(m,x,t) = the (code of the) configuration
that machine M (with code m) is in after t
steps when started on input tape [x]:
– conf(m,x,0) = conf(0,2x-1,1,1) (verify this!)
– conf(m,x,t+1) = newconf(m,conf(m,x,t))

Has M Halted in Standard
Configuration?

• Define relation Done(m,x,t) iff machine M
(coded by m) with input tape [x] has halted in
some standard output configuration after t
steps (or before that).
– Done(m,x,t) iff

left(conf(m,x,t)) = 0 ∧
right(conf(m,x,t)) = 2lg(right(conf(m,x,t)),2)+1 - 1 ∧
sym(conf(m,x,t)) = 1 ∧
state(conf(m,x,t)) = 0

When is M done, if ever?

• Let’s figure out when M is done (as defined on
previous slide), if ever (i.e. after how many steps
does M, when started on [x], halt in standard
output configuration, if it ever does?)
– halttime(m,x) = Mn[c¬Done](m,x)
– Explanation:

• Mn[f](x) returns smallest y for which f(x,y) = 0 if such a y
exists, otherwise it is undefined.

• c ¬Done(m,x,t) = 0 iff M when started on [t] has halted in
standard output configuration

• So, Mn[c¬Done](m,x) returns smallest t for which M has halted
in standard output configuration when started on [x], if such
a t exists, otherwise it is undefined.

Getting function value from
Output Tape

• Finally, let’s get the output value f(x) of the
function computed by M when given input [x]:
– f(m,x) = lg(right(conf(m,x,halttime(m,x))),2)+1

• Note that if M does not halt in standard
output configuration for some input [x], then
halttime(m,x) is undefined, meaning that
f(m,x) will be undefined as well … which is
what it should be.

Summing Up
• Suppose f is Turing-computable*.
• Then there is some Turing-machine that computes* f, i.e.

for any x:
– M transforms [x] into [y] iff f(x) = y
– M, when started in [x] does not halt in standard output

configuration iff f(x) is undefined
• But we just showed:

– M transforms [x] into [y] iff f(m,x) = y
– M, when started in [x] does not halt in standard output

configuration iff f(m,x) is undefined
• So, for any x: f(x) = f(m,x)
• Since f(m,x) is a recursive function, f(x) is recursive as well.
• So, all Turing-computable* functions are recursive.

So What?

• We have shown that:
– All Abacus-computable* functions are Turing-computable*
– All recursive functions are Abacus-computable*
– All Turing-computable* functions are recursive

• Hence, these 3 sets of functions are exactly the same
set of functions!

• Seeing that alternative proposed definitions of
computability (or calculability) turn out to be
equivalent to each other provides further evidence for
the Church-Turing Thesis that every computable
function is Turing-computable*

Moreover

• The proof that all Turing-computable* functions are recursive
can easily be modified to include machines that use an
alphabet of any (finite) size (how?).

• In the proof that all Abacus-computable* functions are Turing-
computable* we showed that any Abacus machine can be
simulated using a Turing-machine using a binary alphabet
only.

• Thus, having more than 2 symbols does not increase the
power of Turing-machines: anything that a Turing-machine
can compute using any number of symbols can be computed
using a Turing machine using only 2 symbols.

Even More

• In the proof that all Abacus-computable* functions are Turing-
computable* we showed that any Abacus machine can be
simulated using a Turing-machine that never goes more than
2 squares to the left of its starting position.

• Hence, anything that is Turing-computable* can be computed
using a Turing-machine that has a one-sided infinite tape only:
you just need to either represent the input on the tape
preceded by two 0’s, or start any computation by shifting the
input two places to the right while never moving to the left of
the starting point (HW question: design such a Turing-
machine)

Oh, and one more Little Thing

• Since the function f(m,x) from our proof is
recursive, it is Turing-computable.

• So, there is some Turing-machine that is able
to take in (the codes of) any Turing-machine M
and input x and output what that machine M
outputs when provided with input x.

• This is of course a Universal Turing-machine!
• So, we have established the existence of a

Universal Machine.

	All Turing-Computable* Functions are Recursive
	Basic Idea
	Set-Up
	Coding the Tape Configuration �(Tape Contents and Head Location)
	Coding Machine Configuration
	Coding the Machine
	Getting Instructions
	Performing Actions
	Define new Configuration
	Configuration at Any Time
	Has M Halted in Standard Configuration?
	When is M done, if ever?
	Getting function value from �Output Tape
	Summing Up
	So What?
	Moreover
	Even More
	Oh, and one more Little Thing

